

Direct photons in pp and Pb-Pb collisions

D. Peresunko "Kurchatov institute"

for the ALICE collaboration

Introduction

- Direct photons provide a tool to test
 - Temperature
 - Collective flow development
 - Space-time dimensions of hot matter
 - Calibration of the initial state
- ALICE peculiarities compared to PHENIX, STAR, WA98
 - Higher temperature => Higher thermal photon yield
 - Higher \sqrt{s} => better separation prompt and thermal photons
 - Stronger π^0 suppression => better S/Bg ratio

ALICE experiment

Photon measurement with ALICE

Photon Conversion Method (PCM)

- Good momentum resolution at low $p_{\scriptscriptstyle T}$
- High momentum reach is limited only by statistics
- Low conversion probability (~8.5%), coverage of full azimuthal angle, |η|<0.9
- Low contamination of photon spectrum

PHOS

- Good energy resolution at high $p_{_T}$
- High photon registration efficiency, limited azimuthal angle (100°) and $|\eta|$ <0.135

Reconstruction of converted photon

V0 algorithm

- Tracks with large impact parameters are paired
- Select pairs with small Distance of Closest Approach (DCA)
- Most abundant particle species K_s^0 , Λ , $\overline{\Lambda}$, γ
- Photon conversion probability in $|\eta|$ <0.9 up to R = 180 cm saturates at 8.5%

Photon identification

- Apply electron identification cuts
- Pair topology cuts

Measurement of π^0 spectrum

 π^0 s are dominant source of decay photons => each detector measures π^0 spectrum independently to reduce sys. uncertainties

Both PCM and PHOS have comparable energy resolutions and dependence on multiplicity.

π^0 spectrum in Pb-Pb collisions

Neutral pion spectra measured in Pb-Pb collisions with PCM and PHOS agree in all centrality bins.

Good cross-check of both measurements

Direct photon calculation

$$\gamma_{direct} = \gamma_{incl} - \gamma_{decay}$$

 γ_{incl} – measured photon spectrum

 $\gamma_{\text{\tiny decay}}$ – decay photon spectrum, estimated from cocktail simulation

$$R_{\gamma} = \frac{\gamma_{incl}/\pi_{meas}^{0}}{\gamma_{decay}/\pi_{cocktail}^{0}} \approx \frac{\gamma_{incl}}{\gamma_{decay}}$$

Some uncertainties cancel in double ratio. Facilitates normalizations of decay photon spectrum.

$$\gamma_{direct} = \gamma_{incl} - \gamma_{decay} = \left(1 - \frac{1}{R_{\gamma}}\right) \gamma_{incl}$$

Double ratio and spectrum in pp

Analyzed statistics 3.8·10⁸ Min.Bias events

In the ratio uncertainties related to: normalization, π^0 measurement, reconstruction efficiency partially or exactly canceled

Measurement is consistent with zero direct photon yield

$$R_{NLO} = 1 + \frac{\gamma_{direct, NLO}}{\gamma_{decay}}$$

Measurement is consistent with NLO predictions

Low mass virtual photons (e⁺e⁻)

$$\frac{1}{N_{\gamma}}\frac{dN}{dM_{ee}} = \frac{2\alpha}{3\pi}\sqrt{1-\frac{4m_{e}^{2}}{M_{ee}^{2}}}\left(1+\frac{2m_{e}^{2}}{M_{ee}^{2}}\right)\frac{1}{M_{ee}}\left(1-\frac{M_{ee}^{2}}{M^{2}}\right)^{3}|F(M_{ee}^{2})|^{2}$$

N.M.Kroll and W.Wada, Phys. Rev. 98 (1955) 1355.

- (+) π^0 contribution decrease with increase of m_{ee}
- (-) big combinatorial background, rapidly increasing with multiplicity

Extraction direct photon contribution

f_{γ,combined} – measured distribution with subtracted combinatorial background

 $\mathbf{f}_{\gamma, \text{decay}}$ – estimated shape of hadronic decays contribution

 $\mathbf{f}_{\gamma, \text{decay}}$ – estimated shape of direct virtual photon contribution

$$f_{\gamma,combined} = (1-r)f_{\gamma,decay} + rf_{\gamma,dir}$$

$$r = \frac{\gamma_{dir}}{\gamma_{incl}}$$

3·10⁸ MinBias pp events (2010 sample)

Direct photons in pp at √s= 7 TeV

Virtual and real photon measurements agree within uncertainties

J.Phys.Conf.Ser. 446 (2013) 012049 J.Phys.Conf.Ser. 612 (2015) 1, 012028

Virtual photons in Pb-Pb

Full Run1 statistics.

Huge combinatorial background: after subtraction only wide $p_{\scriptscriptstyle T}$ bins can be analyzed.

Analysis is ongoing....

Double ratio in Pb-Pb

In central collisions

- double ratio agrees with N_{col} scaled pp NLO predictions;
- at low p_T <2 GeV/c there is a ~20% excess w.r.t. NLO predictions.

In peripheral events

- double ratio is consistent with no direct photon excess at any p₊;
- double ratio is also consistent with N_{col} scaled pp NLO predictions

Direct photon spectrum in Pb-Pb

$$N_{\gamma}^{dir} = \left(1 - \frac{1}{R}\right) N_{\gamma}^{incl}$$

At high $p_T>4$ GeV/c spectrum agrees with N_{col} scaled NLO pp predictions.

Intermediate region – interplay between prompt and thermal (jet conversion, ...?) contributions.

Both theoretical estimates of thermal photon yield underestimate data by factor 2-10 at low $p_{\scriptscriptstyle T}$ <2 GeV/c.

Direct photon collective flow

Inclusive photon collective flow contains contributions from direct and decay photons:

$$v_n^{incl} = \frac{N_{\gamma}^{dir}}{N_{\gamma}^{incl}} v_n^{\gamma, dir} + \frac{N_{\gamma}^{decay}}{N_{\gamma}^{incl}} v_n^{\gamma, decay}$$

With the double ratio R and decay photon flow calculated from cocktail, one can estimate the direct photon flow:

$$v_n^{\gamma,dir} = \frac{R v_n^{\gamma,incl} - v_n^{\gamma,decay}}{R-1}$$

Inclusive photon flow extraction

Collective flow is estimated using event plane method.

Inclusive photon flow is decomposed as

$$\frac{dN}{d\varphi} = \frac{1}{2\pi} \left(1 + \sum_{n} 2v_n \cos(n(\varphi - \Psi_{RP})) \right)$$

where reaction plane is measured with one of 3 detectors

VZEROA: $2.8 < \eta < 5.1$

VZEROC: $-3.7 < \eta < -1.7$

TPC: $-0.9 < \eta < 0.9$

Event plane resolution was estimated using 3-subevent method.

Cocktail simulations:

Use π^{\pm} flow for estimate π^{0} one Use KE_{τ} scaling for other mesons

Above 3 GeV/c inclusive photons significantly smaller than decay photons

Below 3 GeV/c consistent within uncertainties

Direct photon flow v₂

Similar to the yield, direct photon flow at low p_{T} <2 GeV/c is underestimated by theory calculations by a factor 2-10.

Difference between data and theory is ~1-2 sigma: not very significant

Careful error treatment is necessary

Error propagation

$$v_n^{\gamma,dir} = \frac{R v_n^{\gamma,incl} - v_n^{\gamma,decay}}{R-1}$$

Assume R, v_2^{incl} , v_2^{decay} to be independent with uncertainties described by Gaussians.

Due to the pole (R-1) resulting (lower) distribution for v_n^{dir} will not be Gaussian.

v₂ comparison

Compare inclusive photon flow

$$(v_2^{\gamma,incl}-v_2^{\gamma,model})/\sigma_{total}$$

where for $v_{2}^{\gamma,model}$ one can use cocktail, cocktail+theory etc.

- Cocktail does not reproduce v₂, incl
- Cocktail+NLO agree with data
- Cocktail+NLO+thermal (Shen et al.) agree with data
- Cocktail+NLO+thermal (Holopainen et al.) somewhat under predict v_{3}

Triangular flow

Similar to elliptic flow, $v_3^{\gamma,incl}$ Is not reproduced by cocktail $v_3^{\gamma,decay}$.

All models failed to reproduce $v_3^{\gamma,incl}$ at low p_{τ} <1 GeV/c.

June 9, 2015

RHIC&AGS annual use:

Conclusions

- Direct photon spectrum in pp collisions at $\sqrt{s}=7$ TeV was measured with real and virtual photons. Double ratios obtained with two methods agree with each other and with NLO predictions.
- Photon double ratios were measured in Pb-Pb collisions at $\sqrt{s_{NN}}$ =2.76 TeV.
 - In peripheral 40-80% collisions R_{γ} agrees both with no direct photon access and with scaled NLO predictions.
 - In central 0-40% collisions R_{ν} agrees with N_{col} scaled NLO predictions at high $p_{T}>4$ GeV/c
 - An excess ~20% compared to N_{col} scaled NLO predictions in R_{γ} has been measured in 0-40% central Pb–Pb collisions at p_{τ} <2 GeV/c
- A direct photon v_2 which is of similar size as the charged hadron flow has been measured in 0-40% Pb–Pb collisions
- The magnitude of the systematic errors and the propagation of the errors from the Ry to both measurements was discussed
- A different method to compare data and theory for inclusive photon v_2 & v_3 measurements avoiding pole $1/(R_{\gamma}-1)$ was presented.

Backup slides

Cocktail

Meson (C _m)	meas.	Mass	Decay Branch	B. Ratio
	ilicas.		Decay Dianen	
π^0	pp,	134.98	$\gamma \gamma$	98.789%
	Pb-Pb		$e^+e^-\gamma$	1.198%
η	pp	547.3	$\pi^+\pi^-\gamma$	39.21%
			$\pi^+\pi^-\gamma$	4.77%
(0.48)			$e^+e^-\gamma$	$4.9 \cdot 10^{-3}$
$ ho^0$		770.0	$\pi^+\pi^-\gamma$	$9.9 \cdot 10^{-3}$
(1.0)			$\pi^0\gamma$	$7.9 \cdot 10^{-4}$
ω	pp	781.9	$\pi^0\gamma$	8.5%
(0.9)			$\eta\gamma$	$6.5 \cdot 10^{-4}$
η'		957.8	$\rho^0\gamma$	30.2%
			$\omega \gamma$	3.01%
(0.25)			$\gamma \gamma$	2.11%
ϕ	pp,	1019.5	$\eta\gamma$	1.3%
	Pb-Pb		$\pi^0\gamma$	$1.25 \cdot 10 - 3$
(0.35)			$\omega\gamma$	< 5%
Σ^{0} (1.0)		1192.6	$\Lambda\gamma$	100%

 $\frac{m_{T}\text{-Scaling:}}{\text{Same shape of cross sections,}}$ $f(m_{T})$, of various mesons $E\frac{d^{3}\sigma_{m}}{dp^{3}}=C_{m}\cdot f(m_{T})$

Use fit to measured π^0 (Pb–Pb, pp) and η (pp)

Other particle spectra obtained via $m_{_{\rm T}}$ -scaling of measured $\pi^{\rm 0}$

Check of m_T scaling

Cocktail: decay photon flow

Use charged pion v_n to estimate $\pi^0 v_n$ (flows agree within uncertainties)

 KE_{T} scaling: v_{n} of mesons scales with KE_{T} $KE_{T} = m_{T} - m$

Electron selection criteria

Global Electron Selection Criteria

- Both tracks originate from the same V0 candidate
- No kinks
- Opposite charge
- Small R cut (R < 5 cm)
- TPC refit condition
- Minimum momentum of 50 MeV/c
- Minimum fraction of the TPC clusters with respect to findable clusters due to conversion radius

PID Based Selection Criteria

 $n\sigma$ around electron energy loss hypothesis in the TPC dE/dx TOF electron $n\sigma$ selection (if information available)

After PID ~ 80% pure photon sample

Pair selection criteria

Photon χ^2/ndf :

- Based on a Kalman-Filter (AliKFParticle package)
- Measure for conversion likelihood: includes: zero V0 mass, pointing to primary vertex, correct electron mass, mutual secondary vertex

Further Photon Selection Criteria:

- Crosschecks for std. photon criteria
- Psi-Pair angle opening angle perpendicular to B field
- Cosine of pointing angle pointing to the primary vertex

Photon q_{T} :

- Transv. mom. component of daughter relative to the V0 $q_T = p \times \sin(\Theta_{\text{mother-daughter}})$
- Clear separation of γ , Λ and K_s^0

Pair selection criteria

Photon χ^2 /ndf:

Based on a Kalman-Filter (AliKFParticle package)
Measure for conversion likelihood: includes: zero V0 mass, pointing to primary vertex, correct electron mass, mutual secondary vertex

Further Photon Selection Criteria:

Crosschecks for std. photon criteria Psi-Pair angle - opening angle perpendicular to B field Cosine of pointing angle pointing to the primary vertex

Photon q_{τ} :

Transv. mom. component of daughter relative to the V0

$$q_T = p \times \sin(\Theta_{\text{mother-daughter}})$$

Material Budget

Performance of the ALICE Experiment at the CERN LHC arXiv:1402.4476 [nucl-ex]

June 9, 2015

RHIC&AGS annual users meeting